
Large language model

EVALS
in the wild

Issue 1

System



Table of Contents

04 Eval Shows the Way
Different Levels of Eval

06 Why Design Your Own Eval?
A Typical LLM App Architecture
Eval Feedback Loop Overview

11 Types of Evals
System Eval vs Model Eval
Human Judge vs LLM-as-a-judge
Eval of LLM-driven components

13 Interlude: Trouble at the Forest Cafe

15 Before Your First Eval
Doing Vibes Right
Property-based Testing
Setting Up Property-based Tests

20 Interlude: Taming Shoggoth’s Wildest
Recipes

22 Designing the Eval Plan
Eval Plan Design Process Overview
Anatomy of a Quality Dimension
Choosing Your Quality Dimensions
Common Quality Dimensions
Quality Dimensions at Odds
Turning Quality Dimensions into Questions
Picking a Grading Scale
Reference-based Questions

32 Interlude: Grading Culinary Creations



LLM evaluations are a hot topic as
companies move past the flashy AI
demos. A common refrain from
engineers and leaders is: "How
can we trust these systems are
doing the right thing?"

Evals keep coming up as the
answer, the thing "you should" do.
But it's not exactly a standard
part of the software engineering
toolkit.

You don't need a huge team or
complex processes to do this. At
Google, sure, some departments
had entire teams dedicated to
defining quality. But I've also seen
plenty of solid evals done with just
a spreadsheet and a Jupyter
notebook.

So let’s learn about evals!

Sri and Wil

55 Iterlude: Getting the Cafe in Order

60 The Takeaways
What You Measure Matters
Iterate, Iterate, Iterate
Look at Your Data. Look Again
Increase Your Input

36 Aligning and Running the Eval
Design and Align Overview
Generating Eval Items
Choosing Your Judge
Running the Human Judging Process
Designing the Grading Prompt
Measuring Alignment
Iterating on the Grading Prompt
Running LLM-as-a-judge

48 Analyzing Eval Results
Eval Results Analysis Overview
Downloading Eval Results
Computing Question-level Scores
Computing Scores by Slice
Improving Your System
Eval your RAG Component

So we pulled from Sri’s seven
years as a research engineer at
Google, plus a ton of best
practices from around the web.
We decided to make a zine that
could take you from zero to eval”
in a way that’s actually fun to
read. When you create an eval,
you're essentially defining what
"good" looks like for your system. 

If you’ve pirated this PDF, make up for it by
telling all your AI engineering friends! And if
you feel like you got value after reading,
consider buying our next issue.

Pirates on the high seas!

61 Addendum



Sci-fi depictions of working with
futuristic AI is like a dance
between equal partners. But
building current AI apps based on
LLMs (Large Language Model) are
more like working with a junior
colleague that works really fast,
but needs to be provided with a
lot of context and details to work.
In addition, its output can vary
from run to run, even with the
same input.

As of this publication, many AI
engineers do vibe-check evals
with the LGTM@K (Looks Good
To Me) metric, often taking
random stabs in the dark to fix
and improve the system.

Unlike model evals, system evals
help AI engineers improve apps
with consistency. This issue
focuses exclusively on building
system evals to help steer
consistent improvement in your
AI apps.

Building AI apps without system
evals is like driving without a
map: you’re never sure if you’re
getting closer. Even simple evals
will show you the way better than
nothing.

eval shows

the way

Evals are for everyone
It’s work to set up a consistent
and repeatable way of judging an
LLM’s output over time, but it
pays dividends.

It’s hard to describe exactly what
“good” entails, even when using
LLMs to detail it in natural
language. It’s hard to quantify
qualitative metric we want in our
output, such as relevance,
groundedness, and non-toxicity.

With all these barriers, many AI
engineers don’t think they have
time or the inclination for eval
and that it’s solely for the domain
of large companies with the
resources to implement it.

That’s simply not true. There is
always some level of eval which is
right for you and your app at any
stage of maturation. 👉



The road ahead

There are increasing levels of sophistication. Pick the
right level for the size that you’re at.

Even without full-blown eval, just
having systematic ways of doing
eval will yield data to help you
prioritize where to focus your
efforts on improving the system,
to stop wasting effort, and to
secure resources for building new
capabilities.

What can we do to quantify
qualitative metrics? While we
can’t write down a formula for
“good”, we can collect a corpus
of examples of what is considered
good.

From this golden dataset of
examples, we can write down
guidelines for human judges or a
few-shot prompt for an LLM that
can reflect the judgment shown
by this dataset.

Different Levels of Eval

Using the LGTM (Looks good to me) metric, AI engineers
eyeball the output. Without metrics to guide their
priorities or work, there are times when it would have
been better if they did nothing at all. 

Vibes-based human eval

Property-based Tests

systematic human eval

LLM-as-a-judge eval

Also called unit tests, these are aspects of the LLM
output that can be checked by code, such as length or
formatting. Often implemented as regexes or
employing a linter to validate the output.

There is now a process for evals, while still relying on
human judgment. While the gold standard for quality,
it’s slow and not very scalable. But the examples gather
here is the basis for automating eval.

Using LLMs to judge LLM output sounds odd, but we
have humans judging each others’ work all the time. We
can align an LLM to match human judgments to help
scale up iteration towards better outputs.

We’ll show you how to build your
own eval. We won’t recommend
specific tools, as those get
obsoleted in this fast moving
space. Instead, we’ll equip you
with principles and methodology
to build your own eval, at
whatever level of maturation of
your current LLM application. 🍃



Aren't LLMs already evaluated? Yes and
no. The companies that trained the LLMs
evaluate the models to measure their
overall capabilities (model evals), but not
their performance on specific tasks for
real-world users (system evals).
This distinction is crucial because the real
world is messy. Models can behave
unexpectedly when exposed to real-world
scenarios, which is why designing your
own evaluation system is essential.
Generic model evaluations simply can't
capture the nuances of your specific use
case.

Custom evaluations allow you to focus on
your unique application and user needs.
With your domain knowledge, you'll need 

Why Design your own eval?
to articulate to an LLM what constitutes
"good", whether by principle or by
examples. This approach provides insights
that general evaluations miss, helping you
understand how your system performs in
the context that matters most - your own.

A well-designed evaluation system is
systematic and metric-driven. This
approach helps direct your efforts
efficiently, following the 80/20 principle
where 20% of your work yields 80% of the
results. It organizes your thoughts on how
to improve the system, reducing confusion
and anxiety in the process. 👉



Domain-specific requirements

Complex and messy data

Integrating with tools

With clear metrics, you can prioritize your
efforts and focus on the most impactful
improvements.

Custom evals allow your team to ship with
more confidence. Product managers and
leaders can correlate eval metrics with
business KPIs. Engineers can make more
informed architectural decisions like
which vector database to use, whether to
fine-tune, or whether to use GPT-4 or
Claude.

One of the key benefits of custom
evaluations is their ability to identify edge
cases. These rare but critical failure modes
are often specific to your system and
might go unnoticed in general evaluations.
By uncovering these edge cases, you can
address potential issues before they
become problems in real-world
applications.

Custom evaluations also allow you to
track progress over time. As you iterate on
your system, you can consistently
measure improvements, giving you a clear
picture of your development trajectory.
This ongoing assessment helps you
understand the impact of changes and
guides future development decisions.

Finally, the ability to demonstrate
measured improvements can be a
powerful tool in securing resources for
future projects. When you can show
concrete progress and improvements
backed by data, it becomes easier to
justify investments in your work and
related initiatives. 🍃

In healthcare, your system may have to understand
abbreviations and ontologies like CPT codes.

If you’re building in the legal space, it may have to comply with
strict formatting and wording requirements.

Many vertical-specific SaaS applications require cleaning multi-
dimensional data from inconsistently formatted spreadsheets.
Consumer-facing AI systems may have to parse user intents
from unstructured, informally written text.

RAG (Retrieval Augmented Generation) systems might need to
query internal data stores by formulating valid SQL queries or
following a specific JSON/XML schema. Agent systems need to
parse and transform the output of their tools to execute their
plan.



This combines the overall task
description with the context and
the user query into a complete
description of the task for the LLM
to do the task well.

Task C

Task B

Task A

Prompt Template

User Query

RAG
Database

Input

User query is inserted into
the prompt template. It
can also be used in
control flow to decide
which template to use.

Context Prompt

Query Prompt

System Prompt

to Part 2

RAG (Retrieval Augmented
Generation) doesn’t have to be a
database. It can be an external
API call or a search index.
Anything that provides relevant
context to a user’s query will 

Re-ranker

Router

Retrieval just based on embedding similarity
might be inadequate. Document freshness,
authority, or user preferences might
influence relevance. Re-ranking may take
these into account.

Routes the user query to the LLM task that
best handles the query. Sometimes, we can
reject a query completely if we know we don’t
perform well on that kind of query with
existing LLM tasks.

User Query NOt only databases

A Typical LLM App
Architecture

improve Ranking

good prompts have detailsRULEs or LLM-driven Router

Before diving into evals, let’s take
stock of a typical LLM app
architecture.

First, the user query is used to
fetch relevant documents from a 

RAG database. With this set of
documents, we can re-rank them
to provide the most relevant
context for the LLM. Then we can
combine this context with the
user query in a combined 👉



But LLMs can leverage existing tools such as
executing code or inference engine by using the
LLM output to drive these tools.

Finally, the output is sent to the user and stored for
eval. Let’s see what an eval process looks like. 🍃

Task A

For offline evals, the
output is stored for later
processing.

log for eval

NoTask LLMPart 2 Tool Use

Output
to User

To Eval

There are many choices of
models. Eval can help
choose the model that
balances latency, task
performance, and cost.

choice of models

LLMs can choose to make a function
call to generate output more accurate
than LLMs could alone, such as doing
arithmetic or logical reasoning.

expand capabilities

Yes

Function Call

prompt to send to the LLM for a task output.

In simpler RAG (Retrieval Augmented Generation)
apps, there is just a single LLM task to handle all
queries. But more complex apps like a question-
answer system might have multiple specialized
tasks where queries are directed by a router.

LLMs aren’t great at certain types of tasks, such as
logical reasoning and routine calculations. 



Use human or
LLM-as-a-judge to

grade LLMs

Design and run
human or LLM

judges

Eval Feedback Loop Overview

Design eval plan
and grading
guidelines

Analyze eval
grades to find

areas for
improvement

Implement some
improvement to

the system

System eval boils down to creating a systematic
process for capturing the intuition for qualitative
metrics and using it to judge subsequent LLM
outputs.

These qualitative metrics, such as relevance,
toxicity, hallucinations, or brand voice alignment
are hard to express formulaically. To capture the
intuition, we gather a corpus of example query/
output/judgment triplets as our golden dataset.
Then we iterate in a feedback loop. 

Collect human judgments on query/output
pairs. You don’t need that many to start--
about 50 to 100. Gather than while doing
vibe-check evals with your users. If you have
no users, you can bootstrap user queries from
your RAG documents.

Gather real-world data

We use precision/recall or other
metrics to see how well our judge
(human or LLM) matches the
intuition captured by the golden
dataset.

score judges using metrics

First, test a human or LLM judge on these golden
dataset triplets. Second, measure how well they
match the ground truth judgments with metrics.
Lastly, look at which examples they fail on, and
tweak the human judge’s guidelines or LLM eval
prompt. Rinse and repeat. 

Once we have a judge that aligns well with the
intuition for the qualitative metric, we can use it to
judge production LLM outputs given user queries.
🍃

Look at the individual examples and
see which ones the judge missed.
Based on analysis and talking to
domain experts, hatch a hypothesis
for what would improve the scores,
then implement it.

Iterate, iterate, Iterate

Not shown in this overview, but there’s also
an iteration loop here to align the LLM-as-a-
judge with the intuitive notion of good
outputs, as captured by a golden database of
judgements on user query/output pairs.

Designing and Aligning evals is iterative

Gather data intuition
and real-world user

queries
Align LLM judges



Types of evals

Source of truth

category system eval Model eval

A golden dataset curated by domain
experts. Expanded with synthetic data
generated from LLMs

Based on benchmarks

nature of questions
Uses task specific questions to mimic
real-world scenarios

Uses a set of standardized questions
across a variety of scenarios

Frequency of eval
Used on every iteration to improve the
response of an app

Once for every new version that comes
out

purpose
For refining output for deployed real-
world applications

For improving general models over time

Value for evaluator
Provides action items for improvements
for task output

Provides apples to apples comparison
between models

type of evaluator
AI engineer building and supporting LLM
application

Machine learning researcher or ML
engineer building new models

System Eval vs Model Eval
To be clear, there are two different kinds of LLM
evals: model evals and system evals (also called
task or downstream evals).

Model evals rank different LLM models against each
other based on their benchmark performance.
While AI engineers use it occasionally to select
models, it’s mostly used by ML researchers to 

judge the quality of their models. relative to other
models. 

System evals measure how well your LLM app
pipeline performs on a specific user tasks in the
interest of improving performance over time. AI
engineers will spend most of their eval time on this
type of eval. 🍃



Prompt

Re-Ranker

RAG
Database

Task LLM

Human (or friendly forest
animal) judgment on the
performance of our LLM
task can be costly in time
and money, but it’s the
gold standard.

LLM judgement is cheaper
and faster than humans.
But they need to be tuned
to match human level
judgements.

Output

User Query

Documents

Router

Human judge or LLM-as-a-judge

Eval of LLM-driven Components

System eval attempts to measure the quality of LLM
outputs with qualitative metrics like relevance,
toxicity, and groundedness. 

These judgments can be made with a human judge
or an LLM judge. Most likely, you’ll end up using a
mix of both. It’ll be impossible to completely
offload judgments to an LLM. There will be edge
cases, queries drifting over time, and other things
that will always require human judgment and
intervention. 

It’s best to think of LLM judges as augmentations to
scale human judgments, rather than a complete
automation solution to eval. 🍃

Even a moderately complicated LLM pipeline can
have multiple LLM-driven components. While
system evals typically judge end-to-end
performance, eventually we’ll want evals for
individual LLM-driven components. These
components can be interdependent, and just a
single end-to-end eval may not be enough to know
where to improve your system. 

Major components like RAG (Retrieval Augmented
Generation), the Query Router, and the Synthetic
Data Generator can have their own prompts and
hence their own evals. However, the optimization
of a part should never take precedence over the
optimization of the whole.

Let’s see what happens when no evals are in place
at the Forest Cafe. 🍃

Human judge

LLM-as-a-judge


